s DEPARTMENT OF NAAC A,
c“ ncnnEMIc AFFAIBS ACCREDITED UNIVERSITY

CHANDIGARH -
UNIVERSITY Discover. Learn. Empower.

Practical-3.3

Student Name:Rajdeep Jaiswal UID: 20BCS2761
Branch: CSE Section/Group: 902 WM B
Semester: 05

Subject Name: Design & Analysis Algorithm Subject Code: 20CSP-312

1. Aim:

Code and analyze to find all occurrences of a pattern p in a given string s.

2. Task to be done:

To implement Knuth-Morris Pratt algorithm.

3. Algorithm: Unlike Naive algorithm, where we slide the pattern by one and compare all
characters at each shift, we use a value from Ips[] to decide the next characters to be
matched. The idea is to not match a character that we know will anyway match.

How to use Ips[] to decide next positions (or to know a number of characters to be
skipped)?

1. We start comparison of pat[j] with j = 0 with characters of current window of text.

2. We keep matching characters txt[i] and pat[j] and keep incrementing i and j while
pat[j] and txt[i] keep matching.

3. When we see a mismatch

egov@cumail.in



s DEPARTMENT OF NAAC A,
e“ ncnnEMIc AFFAIBS ACCREDITED UNIVERSITY

CHANDIGARH -
UNIVERSITY Discover. Learn. Empower.

4. We know that characters pat[0..j-1] match with txt[i-j...i-1] (Note that j starts with O
and increment it only when there is a match).

5. We also know (from above definition) that Ips[j-1] is count of characters of pat|[0...j-1]
that are both proper prefix and suffix.

6. From above two points, we can conclude that we do not need to match these Ips[j-1]
characters with txt[i-j...i-1] because we know that these characters will anyway match. Let
us consider above example to understand this.

Code:
#include <bits/stdc++.h>

void computeLPSArray(char* pat, int M, int* Ips);

// Prints occurrences of txt[] in pat][]
void KMPSearch(char* pat, char* txt)
{

int M = strlen(pat);

int N = strlen(txt);

// create Ips[] that will hold the longest prefix suffix
// values for pattern

int [ps[M];

// Preprocess the pattern (calculate Ips[] array)
computelLPSArray(pat, M, Ips);

inti=0;//index for txt[]

egov@cumail.in



N DEPARTMENT OF E‘.ﬁﬁ:‘é A+
ﬂ“ ncnnEMIc AFFAIBS ACCREDITED UNIVERSITY

CHANDIGARH -
UNIVERSITY Discover. Learn. Empower.

intj = 0; // index for pat[]
while ((N - i) >= (M - j)) {
if (pat(j] == txt[i]) {
i+

i++;

’

if (j == M) {
printf("Found pattern at index %d ", i - j);
j=lps[j-1];

// mismatch after j matches

else if (i < N && pat[j] != txt[i]) {
// Do not match lps[0..Ips[j-1]] characters,
// they will match anyway

if (j 1=0)
j=1ps[j-1I;
else
i=i+1;

// Fills lps[] for given pattern pat[0..M-1]
void computeLPSArray(char* pat, int M, int* Ips)
{

// length of the previous longest prefix suffix

o9eaVv
egov@cumail.in



s DEPARTMENT OF NAAC A
e“ ncnnEMlc Arrnlns ACCREDITED UNIVERSITY

CHANDIGARH -
UNIVERSITY Discover. Learn. Empower.

int len =0;
lps[0] = 0; // lps[0] is always O

// the loop calculates Ips[i] fori=1to M-1
inti=1;
while (i < M) {
if (pat[i] == pat[len]) {
len++;
Ips[i] = len;
i++;
}
else // (pat[i] != pat[len])
{
// This is tricky. Consider the example.
// AAACAAAA and i = 7. The idea is similar
// to search step.
if (len 1=0) {
len = Ips[len - 1];

// Also, note that we do not increment
// i here

}

else // if (len == 0)

{
Ips[i] = 0;

i++;

’

o9eaVv
egov@cumail.in



s DEPARTMENT OF NAAC A
e“ AennEMlc Arrnlns ACCREDITED UNIVERSITY

CHANDIGARH "
UNIVERSITY Discover. Learn. Empower.

// Driver program to test above function

int main()

{
char txt[] = "ABABDABACDABABCABAB",;

char pat[] = "ABABCABAB";
KMPSearch(pat, txt);

return O;

}
Complexity Analysis:

Time Complexity: O(n)

5. Result:

v 7 K input
Found pattern at index 10

...Program finished with exit code 0

Press ENTER to exit console.

Learning outcomes (What | have learnt):
1. Learn about finding pattern in a string.

2. Learn about time complexity of program.

egov@cumail.in



s DEPARTMENT OF NAAC A,
crqﬁ!!m ncnnEMlc AFFAIBS ACCREDITED UNIVERSITY

UNIVERSITY Discover. Learn. Empower.

3. Learnt to implement Knuth-Morris Pratt
algorithm.

egov@cumail.in



