

Practical-3.3

Student Name:Rajdeep Jaiswal UID: 20BCS2761

Branch: CSE Section/Group: 902 WM B

Semester: 05

Subject Name: Design & Analysis Algorithm Subject Code: 20CSP-312

1. Aim:

Code and analyze to find all occurrences of a pattern p in a given string s.

2. Task to be done:

To implement Knuth-Morris Pratt algorithm.

3. Algorithm: Unlike Naive algorithm, where we slide the pattern by one and compare all
characters at each shift, we use a value from lps[] to decide the next characters to be
matched. The idea is to not match a character that we know will anyway match.

How to use lps[] to decide next positions (or to know a number of characters to be
skipped)?

1. We start comparison of pat[j] with j = 0 with characters of current window of text.
2. We keep matching characters txt[i] and pat[j] and keep incrementing i and j while

pat[j] and txt[i] keep matching.
3. When we see a mismatch

4. We know that characters pat[0..j-1] match with txt[i-j…i-1] (Note that j starts with 0
and increment it only when there is a match).

5. We also know (from above definition) that lps[j-1] is count of characters of pat[0…j-1]
that are both proper prefix and suffix.

6. From above two points, we can conclude that we do not need to match these lps[j-1]
characters with txt[i-j…i-1] because we know that these characters will anyway match. Let
us consider above example to understand this.

Code:
 #include <bits/stdc++.h>

void computeLPSArray(char* pat, int M, int* lps);

// Prints occurrences of txt[] in pat[]
void KMPSearch(char* pat, char* txt)
{
 int M = strlen(pat);
 int N = strlen(txt);

 // create lps[] that will hold the longest prefix suffix
 // values for pattern
 int lps[M];

 // Preprocess the pattern (calculate lps[] array)
 computeLPSArray(pat, M, lps);

 int i = 0; // index for txt[]

 int j = 0; // index for pat[]
 while ((N - i) >= (M - j)) {
 if (pat[j] == txt[i]) {
 j++;
 i++;
 }

 if (j == M) {
 printf("Found pattern at index %d ", i - j);
 j = lps[j - 1];
 }

 // mismatch after j matches
 else if (i < N && pat[j] != txt[i]) {
 // Do not match lps[0..lps[j-1]] characters,
 // they will match anyway
 if (j != 0)
 j = lps[j - 1];
 else
 i = i + 1;
 }
 }
}

// Fills lps[] for given pattern pat[0..M-1]
void computeLPSArray(char* pat, int M, int* lps)
{
 // length of the previous longest prefix suffix

 int len = 0;

 lps[0] = 0; // lps[0] is always 0

 // the loop calculates lps[i] for i = 1 to M-1
 int i = 1;
 while (i < M) {
 if (pat[i] == pat[len]) {
 len++;
 lps[i] = len;
 i++;
 }
 else // (pat[i] != pat[len])
 {
 // This is tricky. Consider the example.
 // AAACAAAA and i = 7. The idea is similar
 // to search step.
 if (len != 0) {
 len = lps[len - 1];

 // Also, note that we do not increment
 // i here
 }
 else // if (len == 0)
 {
 lps[i] = 0;
 i++;
 }

 }
 }
}

// Driver program to test above function
int main()
{
 char txt[] = "ABABDABACDABABCABAB";
 char pat[] = "ABABCABAB";
 KMPSearch(pat, txt);
 return 0;
}
Complexity Analysis:

Time Complexity: O(n)

5. Result:

Learning outcomes (What I have learnt):

1. Learn about finding pattern in a string.

2. Learn about time complexity of program.

3. Learnt to implement Knuth-Morris Pratt
algorithm.

